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ABSTRACT 

The Kreiss matrix theorem asserts that a family of N X N matrices is L,-stable if 
and only if either a resolvent condition (R) or a Hennitian norm condition (H) is 
satisfied. We give a direct, considerahly shorter proof of the power-houndedness of an 
N X N matrix satisfying (R), sharpening former results by showing that power- 
houndedness depends, at most, linearly on the dimension M. We also show that 
L,-stability is characterized by an H-condition employing a general H-numerical 

radius instead of the usual H-norm, thus generalizing a sufficient stability criterion, 
clue to Lax and Wendroff. 

1. INTRODUCTION 

In studying the stability of difference approximations to pure initial-value 
systems, one encounters the problem of deciding the &-stability of a family 
of matrices, F, i.e., the uniform power-boundedness of all matrices A E F. 

There is a circle of ideas, first explored by H.-O. Kreiss [4], which gives 

the three necessary and sufficient conditions for a family F of NX N matrices 
to be &-stable; namely, the resolvent condition (R), the triangulization 
condition (S), and the strict H-stability condition (H). As given there ([4]; see 
also [14, Section 4.9]), the equivalence is proved by showing that each one of 
these conditions implies the next, and the circle is closed by finally showing 
that (H) implies &-stability. 

A further study of the equivalence between &-stability and the resolvent 
condition, each of which was found to be valuable in its own right (e.g. 
[S, 12,16]), is given in Section 2. Using a completely different approach than 
the one taken in Kreiss’s matrix theorem [14, Section 4.91, we give a direct, 
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considerably shorter proof of the equivalence between the two conditions, 
obtaining sharper results regarding their dependence on the typical dimension 
N. In Section 3 we show that &-stability is maintained if and only if strict 
H-stability holds, where a generalized H-mmmerical radius is employed instead 
of the usual H-norm used in Kreiss’s matrix theorem, thus generalizing the 
Lax-Wendroff sufficient (but not necessary) stability criterion [8]. 

Before turning to discuss our results, we introduce some of the notation 
which will be used later on. 

Let C denote the field of complex numbers, and let M,v denote the algebra 
of NX N complex matrices with identity matrix 1. For a vector u E Cl” we 
denote its conjugate transpose by u*, and by saying HGJ, H and J being 
Hermitian matrices in LV,~, we mean u*Hu-- <u*Ju for all vectors U. Given 
N-dimensional vectors U, o, we denote their H-imrer product and norm by 

which reduce, in the special case H= 1, to the standard notions of Euclidian 
inner product and norm. Similarily, for a matrix A EM,., we define its 
H-numerical radius and H-norm by 

r!,(A)= SUP I(Aw dr,l, IIiU,,= sup ]Au(,,, 
I 1’ I ,I L 1 11’ I I, 1 

where in the special case H =I, we remain within the standard definitions of 
numerical radius and L,-(spectral) norm. In particular we have 

(1.1) 

as can be easily verified by taking u = Au/l Au 1. Given a 2~periodic real 
valued function f( 6), then V [ f] denotes its total variation over [0,2~] and 
A -(27r-‘j,2”f(B)etpB de its pth (complex) Fourier coefficient, where the 
inequality [17, p. 481 

V[fl l&l<- 
TP ’ 

p=1,2,..., (1.2) 

holds. 
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2. THE RESOLVENT CONDITION 

We start with the following definitions. 

DEFINITION 2.1 (Z&stability [ 14, p. 721). A family of matrices, F, is said 
to be La-stable if there exists a constant (stability constant) C, >O such that 
for all AEF and all positive integers p, 

DEFINITION 2.2 (The resolvent condition). A family of matrices, F, is 
said to satisfy the resolvent condition if there exists a constant C, >O such 
that for all A EF and all complex numbers z with 1 z I> 1, the matrices zZ- A 
are nonsingular and the resolvent estimate 

holds. 

The proof that L,-stability implies the resolvent condition is immediate. 
Indeed, for a power-bounded matrix A, we consider (zZ- A) ~ ‘, 1 z ) > 1 

(whose existance is assured, since by the von Neumann condition the spec- 
trum of A is contained inside the closed unit disc [14, Section 4.7]), and 
expand it by power series in A, obtaining [14, Section 4.91 

Thus, the resolvent estimate (R) is satisfied with constant C, = C,. To prove 
the converse, however, a much more delicate analysis is required. 

Here we note that the technique of verifying the resolvent condition in 
order to decide &-stability has been generally applied in numerical analysis 
to amplification matrices of fixed finite order, i.e., to the Fourier transforms of 
solution operators [5,12,16]. In other cases (e.g., approximations to mixed 
initial-boundary-value problems [6], time discretizations of spectral methods 
[3, Section 9]), the crucial question concerns the stability of the solution 
operators themselves, whose representation is made by a family of finite but 
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nonunif&mly bounded order. Therefore, of particular interest to us is the 
dependence of the stability constant C, on the typical dimension :1’. 

Assume that a given family F of 1V X IV matrices satisfies the resolvent 
condition. Then by Kreiss’s matrix theorem [14, Section 4.91 it follows, using 
the intermediate (S) and (H) steps, that F is I,,-stable with stability constant 
c,-C,“‘ . h extension of that theorem to families of unbounded finite order 
matrices was given in [2], where using the same intermediate steps it was 
shown that for each AGF with minimal polynomial of degree 9, C,, - Ch’. 
Direct proofs of the implication of La-stability by the resolvent condition 
were given by Morton 1121, Miller and Strang (who, in fact, directly proved 
the stronger strict Ii-stability) [ 111, and Miller [lo]. The various proofs show 
the &stability of F with stability constant C, -S’v( 1v + 4),‘-v, C:, - N “, 
C, _ ($Y’, respectively. The proofs are rather involved ones and require sharp 
estimates on the distribution of the eigenvalues of the matrices A E F. 

The following theorem, whose relatively simple proof is basically a modifi- 
cation of that of Laptev [7], sharpens the stability estimates obtained in all the 
above mentioned results. 

THEOREM 2.1. Let A be an N-ditner~ionul matrix with minimal poly- 

nomial rn( z) of degree s, and assume it satisfies the resolvent condition (R). 
Then its powers are bounded by 

II AP II 4 
32esC, 

77 ’ 
p-0,1,... . (2.1) 

Proof. Let p be a natural number, r be a real number with r>l, and u 
and v be N-dimensional unit vectors, and consider the (real) functions 

+(B)=Re[v*(re’“-Z-A) rn]. ~(B)-lIII[v*oPiQI-A)~ la]. 

(2.2) 

where using Schwartz’s inequality and applying our resolvent estimate as- 
sumption (R), we have 

(2.3) 
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Using the identity 

(A - =I)‘-‘, (2.4) 

which can be verified by multiplying both sides by (zZ-A)m(z) and 
collecting terms, we find that each of the functions @( 0) and #( 0) is a rational 
trigonometric function with numerator of degree 2s- 1 and denominator of 
degree 2s. Hence, their derivatives are vanishing at the 8s- 1 zeros of 
trigonometric polynomials of degree 4s- 1. Thus ~(0) and +( 0) have, at 
most, 8s different intervals of monotonicity, and therefore their total varia- 
tions are bounded by 

Since by our assumption the spectrum of A is contained inside the closed 
unit disc, we may apply the Cauchy integral formula along the contour 
jz1=r>l to obtain 

(Ap-k, ~)=r~($~ +ij,). (2.6) 

Combining (2.6), (1.2), (2.5), and (2.3) gives us 

and by choosing r= 1-t p -I, we finally conclude 

Since the degree of the minimal polynomial of an NX N matrix does not 
exceed N, we may conclude 
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COROLLARY 2.1. Let F be a family of NXN tnutrices satisfying the 
resolvent condition. Then F is L,-stable with stability constant C, --iV. 

We close this section with some additional remarks. 

(1) McCarthy and Schwartz [9] gave a counterexample of a family F 
satisfying the resolvent condition, where the dependence of the stability 
constant C, on the dimension N is a logarithemic one. We conjecture that the 
linear dependence asserted in Corollary 2.1 is the best that can be obtained in 
the general case. 

(2) The resolvent assumption made in Theorem 2.1 can be relaxed by 
requiring the resolvent estimate (H) to hold only in some fixed neighborhood 
of the unit circle 1~ 1 z 1 G 1 + e, rather than for all z outside the unit disc. 
Indeed, take r, 1 <r< 1 +F, and follow the proof line by line, but in this case 
choose for the estimate (2.7) T= 1 + EP -I, obtaining 

(3) Theorem 2.1 can be easily generalized for characterizing families F of 
NX N matrices which are weakly a-stable (cw>O), namely [14, Section 5.21 
those satisfying, for some constant C,, >O, 

/IAPII~C~pLL, AEF, p-O,1 ,... . (2.9) 

Assume that F is a-stable, then it immediately follows that F satisfies a 
generalized resolvent condition of the form 

II(zZ-A)-'11~ CR 
(Izl-l)a+' ’ 

AEF, l~l>l. (2.10) 

In fact, as in the special case (Y=O discussed above, (2.10) is valid with 
C, = C,i. That the converse is also true was proved in [l]. An alternative, 
shorter and sharper, proof of the converse is obtained by repeating the proof 
of Theorem 2.1, replacing the term r- 1 in the denominators of the estimates 
(2.3) (the only estimates whose derivation depends on our resolvent assump- 
tion) by (r-l)ai’, with a corresponding change for the estimate (2.7). and 
concluding that 

Thus, F is a-stable, with a stability constant which grows at most linearily 
with the dimension N. 
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3. STRICT H-STABILITY CONDITION 

DEFINITION 3.1 (Strict H-stability). A family of matrices, F, is said to be 
strictly H-stable if there exists a constant C, > 0, and for each A E F a positive 
definite Hermitian matrix H, such that 

C,kH<C,Z, 

IIAIl,,~l. 
(H) 

The strict H-stability condition, whose equivalence to La-stability of a 
family F of NXN matrices follows by Kreiss’s matrix theorem ([14, Section 
4.91; see also [ll]), has been used quite extensively in studying the stability 
properties of finite difference schemes [ 14,151. It therefore seems worthwhile 
to note another, somewhat milder, L,-stability characterization of this type. 
For that purpose, let us first state 

LEMMA 3.1 (Generalized Halmos inequality). Given un Ndimensional 

matrix A. we have 

rH(AP)+@), p-0,1,... . (3.1) 

Proof. Let H= T*T for some nonsingular matrix TEM,. Applying the 
Halmos inequality [13], we obtain 

Alternatively, one may repeat Pearcy’s proof [13], noting its independence of 
the inner product being employed; in particular, for the H-inner product, 
(3.1) follows. n 

Lemma 3.1 enables us to prove 

THEOREM 3.1. A family F of NX N matrices is L,-stable if and only if 

there exists a constant C>O, and for each A EF a positive definite Hermitian 

matrix H, such that 

C-‘Z<H<CZ, (3.2a) 

r,(A)al. (3.2b) 
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Proof. For a positive definite Hermitian matrix H= T*?‘, T a nonsingular 
matrixwith (ITkJI=IINk111’2fork=~1, wehave 

and 

T~(A)=~(TA?‘-‘)~IITA?‘~‘~~=~IAII~, (3.3) 

I~AII~Il?‘~‘II.III’II.IITAT~‘/I~IIT~’/I.IITI~2r(?‘AT~‘) , 

=2~IH-‘~~“2.11H~11’2rH(A). (3.4) 

Now the “only if” part of the theorem follows by Kreiss’s matrix theorem 
together with (3.3). For the converse we apply (3.4) and (3.1), which, 
combined with our assumption (3.2), yield 

IIAPII~2Crn(AP)~2Crf;(A)a2C, p-0,1,2 )... . n (3.5) 

For the special case H= I Theorem 3.1 is reduced to the sufficient (but 
not necessary) stability criterion due to Lax and Wendroff [8], namely, 
r(A)< 1. 
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